
50 20 48

PC P-NET® Interface board

PD 3920

Manual

GB October 1990





50 20 48

PC P-NET® interface board, PD 3920.

The PC P-NET® interface board, PD 3920 is an intelligent interface board used for communication
to a fieldbus. Installing a PC P-NET® interface board, PD 3920 in a PC provides you the facility
to communicate directly to a fieldbus, called P-NET®. Communicating with the P-NET® using the
P-NET® protocol enables you to communicate with ALL modules connected to the P-NET®,
including both interface modules and controllers, without doing any extra PC-dedicated
programming in the controllers or the interface modules. The PC communicates with the PD3000
controller and interface modules with the P-NET® protocol by using a special communication driver,
called P-NET® driver and an interface board, the PC P-NET® interface board PD 3920. The baud
rate is fixed at 76800 baud, corresponding to the P-NET® standard.

Using the PC P-NET® interface board.

Installing the PC P-NET® interface board.

1



50 20 48

Before you install your PC P-NET interface board you must prepare your computer in the following
way:

1. Turn power OFF.
2. Disconnect the power cord and all other cables from the back of your system unit.
3. Locate and remove the cover mounting screws and slide the cover of your computer

off.
4. Examine the interface board to familiarize yourself with the position of the jumpers.
5. You need to set the jumpers on your interface board to ensure that the interface board

is compatible with your computer. Refer to the following table for the correct jumper
settings for the type of computer you are using.

Description of jumpers.

BASE address jumper (JP1-JP8):

Jumper Address Normally used for
PC/XT PC/AT

JP1: 070 (hex) RTC, Cmos ram RTC,Cmos ram Do not use!
JP2: 0F0 (hex) Math. Co-proc. Math. Co-proc Do not use!
JP3: 270 (hex) LPT2*
JP4: 2F0 (hex) COM2* COM2*
JP5: 170 (hex) Factory setting
JP6: 1F0 (hex) Hard Disk
JP7: 370 (hex) LPT1* LPT1*
JP8: 3F0 (hex) COM1* COM1*

Interrupt selector jumper (JP9-JP14):

Jumper Interruptnumber Normally used for
PC/XT PC/AT

JP9: 2 RESERVED EXTENDED Do not use!
JP10: 3 COM2* COM2* Factory setting
JP11: 4 COM1* COM1*
JP12: 5 Fixed Disk LPT2*
JP13: 6 Diskette Diskette Do not use!
JP14: 7 LPT1* LPT1*

2



50 20 48

When you have determined the correct jumper settings for your computer, set the jumpers on the
appropriate pair of pins. Record the settings of the jumpers for later installation of the PNETCARD
driver in the CONFIG.SYS file.

After you have set the jumpers, perform the following steps to install the interface board in the
expansion slot in your computer.

1. Locate a free expansion slot on your computer. You may need to refer to your
computer’s User’s Manual to choose the correct expansion slot.

2. Remove the expansion slot cover (the metal plate on the back panel of the system unit)
by first removing the screw which hold the cover in place and then carefully lifting off
the slot cover completely.

3. Insert the interface board firmly in your computer’s expansion slot. Make sure that the
connector (the gold striped end of the interface board) is setting properly in the
expansion slot groove and the bracket of the interface board is in the groove which
previously held the slot cover.

4. After checking that the top of the interface board is aligned with the hole on the top
of the expansion slot, replace the screw which previously held the expansion slot
cover.Tighten the screw firmly so it holds the bracket of the interface board in place.

5. Replace the cover of your computer and tighten the cover mounting screws.
6. Reconnect the cables previously removed but leave the power switch for your system

unit OFF.
7. Locate the 9-pin male PC P-NET connector on the back of your system unit and gently

press the P-NET connector in place. Tighten the screws on the side of the 9-pin PC
P-NET connector to secure it.

3



50 20 48

P-NET connection.

The P-NET fieldbus is connected in a ring circuit. It is recommended to connect the P-NET to the
PC through a stub connector. The stub length must not exceed 2 meters.

Description of the 9-pin male PC P-NET connector.
Pin Connection
1 P-NET A
2 NC
3 P-NET S
4 NC
5 P-NET B
6 NC
7 NC
8 NC
9 NC

NC = not connected

The P-NET S (shield) must be isolated from the plug housing, thus a DSUB-9 plug with a plastic
house is recommended.

Electrical specification.

Power supply (via the PC bus) 5 Volt, 150 mA (max 300 mA)

Bus interface XT/AT compatible bus-interface

P-NET interface RS485 2 wire twisted and shielded, galvanically
separated from the interface board.

4



50 20 48

The P-NET driver.

Installing the P-NET driver.

This description is valid for the following driver version:

PNETCARD.SYS: vers. 1.00.

This version is for use with the PC P-NET interface board (’PNETCARD.SYS’). The P-NET driver
is a resident program, which is installed in memory when the PC is booted. To install the driver,
the following line must be inserted in CONFIG.SYS:

DEVICE=[d:][path]driver [/base] [/int] [/masters] [/nodeaddr]

[d:][path]
specifies the drive and directory where the driver is to be found,

driver
specifies the driver file name, PNETCARD.SYS

base
specifies the I/O port selected with the jumper JP1-JP8 on the PD3920 interface board.

int
specifies the interrupt selected with the jumper JP9-JP14 on the PD3920 interface board.

masters
specifies the number of masters on the P-NET.

node
is the PC’s P-NET node address.

Example:

DEVICE=C:\PNET\PNETCARD.SYS /BASE:$170 /INT:4 /MASTERS:6 /NODE:1

5



50 20 48

Using the P-NET driver in a TURBO-PASCAL program.

This description is valid for the following driver versions:

PNETCARD.SYS vers. 1.00.
PNETDRIV.86 vers. 3.08.
PNETDRIV.286 vers. 3.08.

A TURBO PASCAL file is included with the driver. This file contains different procedures for use
in the program. These procedures perform opening and closing the driver, loading and storing data
via the driver and converting of the various data types to/from TURBO PASCAL and the interface
modules including the PD3000 controller. Each of these procedures are described below.

Data exchange.

When using the driver from a TURBO-PASCAL program (ver. 4.0 later), the following record must
be used to exchange variables with the driver and the program. The variable of the record type must
hold the correct data before data are loaded/stored. The procedures to load/store data via the driver
are listed below and are delivered in a PNETUNIT.PAS file together with the driver.

TYPE
buf56 = ARRAY[0..55] OF BYTE;

P_Net_Block = RECORD
P_Net_No : STRING[25];
SoftWire_No : WORD;
AdrLow : WORD;
Offset : INTEGER;
DataReady : INTEGER;
ErrorCode : INTEGER;
NumOfByte : INTEGER;
PnetData : buf56;

END;

P_Net_No
This field must hold the complete node address for the module you want to access. The
complete node address is given as a sequence of P-NET node addresses and port numbers,
calculated from the PC. The first byte in the string (P_Net_No[0]) holds the number of bytes
in the complete node address. The P-NET node addresses and port numbers must be in
hexadecimal (NOT ASCII).

6



50 20 48

SoftWire_No
This field must hold the softwire number for the variable you want to access. The softwire
number can be a softwire number in a PD3000 controller or it can be the register address in
an interface module. When using absolute addressing, this field must hold the higher two byte
of the address. The lower two byte of the address must be stored in AdrLow.

AdrLow
When using absolute addressing, this field must hold the lower two byte of the address. The
higher two byte of the address must be stored in SoftWire_No.

Offset
This field holds an offset, in byte, to the data from the specified SoftWire_No or address. The
Offset can be used when accessing a complex variable, e.g. array or record.

DataReady
This field denotes if the transmissions to/from the P-NET are ready. DataReady has the
following meaning:

0: The transmission has not finished yet, the data are not loaded/stored.
1: Data are loaded/stored and the driver is ready.
2: Reserved.
3: Reserved.

ErrorCode
This field denotes the errorcode from the driver as a result of the transmission. The errorcode
consists of 16 bit (an integer), where each bit has the following meaning:

15 7 0

x x x x x x x x

No answer
Inform. lengtherror
Sum check error
Overrun/framing err.
Engaged
Data error
Wait
Module error

NOT IN USE

7



50 20 48

Combined error bits with a separate interpretation:
bit 0..1 ($0003): Time out in "Answer comes later"
bit 0..3 ($000F): Error on other net.
bit 0..4 ($001F): Too many "Engaged/Wait"
bit 0..3,5 ($002F): Buffer full/empty

Other combinations of the above error bits are a result of more than one error from the transmission
and must be interpreted in a special way.

NumOfByte
This field must hold the number of byte you want to load or store. When accessing a PD3000
controller, you must be careful not to access more than one byte if you have anodd address
(absolute addressing or odd offset). If you do so, the controller will take a reset (restriction
in the 68000 microprocessor in the controller).

PnetData
This field holds the data that you want to load/store via P-NET. The data must be converted
and stored in the array before they are stored via P-NET, and after loading they must be
converted before they are stored in the variables in the PC. These conversion procedures
between TURBO PASCAL and a PD3000 controller (IEEE format) and other interface
modules are listed below and are delivered in a PNETUNIT.PAS file together with the driver.

Communication procedures.

InitDriver
Before the driver is used, the interface board or the serial port and the driver must be
initialized. This is done by calling the functionInitDriver . This function is a boolean and
is only called once in the program. The function returns true if the driver is installed.

CloseDriver
Before the program is terminated, the driver must be closed. This is done by calling the pro-
cedureCloseDriver. The driver is opened as a file by InitDriver and when closed, its DOS
file handle is freed for reuse.

LoadPNetData(VAR PNB: P_Net_Block )
This procedure loads data via the P-NET. The P_Net_No, SoftWire_No and number of byte
must be set up in a variable of type P_Net_Block, before the procedure is called. The loaded
data are stored in PNB.PnetData.

8



50 20 48

StorePNetData(VAR PNB: P_Net_Block )
This procedure stores data via the P-NET. The P_Net_No, SoftWire_No and number of byte
and the data must be set up in a variable of type P_Net_Block, before the procedure is called.

AndPNetData(VAR PNB: P_Net_Block )
This procedure performs a bitwise AND via the P-NET, with one operand being the data in
P_Net_Block.PnetData and the other operand being data on the net, specified by the
P_Net_No and SoftWire_No. The P_Net_No, SoftWire_No and number of byte must be set
up in a variable of type P_Net_Block, before the procedure is called.

OrPNetData(VAR PNB: P_Net_Block )
This procedure performs a bitwise OR via the P-NET, with one operand being the data in
P_Net_Block.PnetData and the other operand being data on the net, specified by the
P_Net_No and SoftWire_No. The P_Net_No, SoftWire_No and number of byte must be set
up in a variable of type P_Net_Block, before the procedure is called.

AbsLoadPNetData(VAR PNB: P_Net_Block )
This procedure loads data via the P-NET. The P_Net_No, absolute address and number of
byte must be set up in a variable of type P_Net_Block, before the procedure is called. The
loaded data are stored in PNB.PnetData.

AbsStorePNetData(VAR PNB: P_Net_Block )
This procedure stores data via the P-NET. The P_Net_No, absolute address, number of byte
and the data must be set up in a variable of type P_Net_Block, before the procedure is called.

AbsAndPNetData(VAR PNB: P_Net_Block )
This procedure performs a bitwise AND via the P-NET, with one operand being the data in
P_Net_Block.PnetData and the other operand being data on the net, specified by the
P_Net_No, SoftWire_No and AdrLow. The P_Net_No, absolute address and number of byte
must be set up in a variable of type P_Net_Block, before the procedure is called.

AbsOrPNetData(VAR PNB: P_Net_Block )
This procedure performs a bitwise OR via the P-NET, with one operand being the data in
P_Net_Block.PnetData and the other operand being data on the net, specified by the
P_Net_No, SoftWire_No and AdrLow. The P_Net_No, absolute address and number of byte
must be set up in a variable of type P_Net_Block, before the procedure is called.

SetPNetNumber(Number: INTEGER);
This procedure set the PC’s P-NET node address to Number.

9



50 20 48

GetPNetNumber(VAR Number: INTEGER);
This procedure returns the PC’s node address (P-NET number).

SetMasters(Number: INTEGER);
This procedure defines the number of masters on the P-NET connected to the PC. This is
only valid if the PD3920 PC P-NET interface board is installed in the PC. IF the PD3920
interface board is not installed, this procedure have no effect.

GetMasters(VAR Number: INTEGER);
This procedure returns the number of masters on the P-NET connected to the PC. This is
only valid if the PD3920 PC P-NET interface board is installed in the PC. If the PD3920
interface board is not installed, this procedure have no effect.

SetBaudRate(Baud: WORD);
This procedure defines the baudrate on the P-NET connected to the PC’s serial port. This is
only valid if you use the serial port otherwise this procedure have no effect.

GetBaudRate(VAR Baud: WORD);
This procedure returns the baudrate on the P-NET connected to the PC’s serial port. This is
only valid if you use the serial port otherwise this procedure have no effect.

SetPort(Port: WORD);
This procedure defines the communication port for the P-NET. This is only valid if you use
the serial port’s otherwise this procedure have no effect. Valid ports are 1 for COM1 and 2
for COM2.

GetPort(VAR Port: WORD);
This procedure returns the port number. If you use a serial driver port are 1 for COM1, and
2 for COM2. If you use PC P-NET interface board Port is the BasePort.

GetDriverVersion(VAR Major, Minor: INTEGER);
This procedure loads the driver version from the P-NET driver. This is only valid if you use
the PC P-NET interface board otherwise this procedure have no effect.

GetDriverType: INTEGER;
This function returns the driver type. The following types is defined:

1: Serial driver for 80286/386/486
2: Serial driver for 8088/86
3: Driver for PC P-NET interface board

GetPNetCardVersion(VAR Major, Minor: INTEGER);
This procedure loads the software version from the PD3920 PC P-NET interface board. If
used on a system using the serial port, the result is (0,0).

10



50 20 48

Conversion procedures.

ByteFromPd3000(VAR PD: buf56; VAR b: BYTE )
This procedure converts data from the field variablePnetData into a byte. The procedure
must be called after loading a byte via the P-NET.

ByteToPd3000(VAR b: BYTE; VAR PD: buf56 )
This procedure converts a byte to the field variablePnetData. The procedure must be called
before a byte is stored via the P-NET.

IntegerFromPd3000(VAR PD: buf56; VAR Int: INTEGER )
This procedure converts data from the field variablePnetData into an integer. The procedure
must be called after loading an integer via the P-NET.

IntegerToPd3000(VAR Int: INTEGER; VAR PD: buf56 )
This procedure converts an integer to the field variablePnetData. The procedure must be
called before an integer is stored via the P-NET.

WordFromPd3000(VAR PD: buf56; VAR W: WORD )
This procedure converts data from the field variablePnetData into a word. The procedure
must be called after loading a word via the P-NET.

WordToPd3000(VAR W: WORD; VAR PD: buf56 )
This procedure converts a word to the field variablePnetData. The procedure must be called
before a word is stored via the P-NET.

LongIntFromPd3000(VAR PD: buf56; VAR LI: LongInt )
This procedure converts data from the field variablePnetData into a longinteger. The
procedure must be called after loading a longinteger via the P-NET.

LongIntToPd3000(VAR LI: LongInt; VAR PD: buf56 )
This procedure converts a longinteger to the field variablePnetData. The procedure must be
called before a longinteger is stored via the P-NET.

RealFromPd3000(VAR PD: buf56; VAR R: REAL )
This procedure converts data from the field variablePnetData into a real. The procedure
must be called after loading a real via the P-NET.

RealToPd3000(VAR R: REAL; VAR PD: buf56 )
This procedure converts a real to the field variablePnetData. The procedure must be called
before a real is stored via the P-NET.

11



50 20 48

LongRealFromPd3000(VAR PD: buf56; VAR R: REAL )
This procedure converts data from the field variablePnetData into a real. The procedure
must be called after loading a longreal via the P-NET.

LongRealToPd3000(VAR R: REAL; VAR PD: buf56 )
This procedure converts a real to the field variablePnetData. The procedure must be called
before a longreal is stored via the P-NET.

OldRealFromPd3000(VAR PD: buf56; VAR R: REAL )
This procedure converts data from the field variablePnetData into a real. The procedure
must be called after loading an oldreal via the P-NET.

OldRealToPd3000(VAR R: REAL; VAR PD: buf56 )
This procedure converts a real to the field variablePnetData. The procedure must be called
before an oldreal is stored via the P-NET.

12


