
The importance of error handling 552132-01

Page 1 of 5

The problem

In control systems with communication, errors can happen. A transmission error or a receiver

that is busy could be some of the explanations of why a communication could go wrong. In

VIGO6, errors in communication result in invalidation of the data being received to avoid

half packets of valid data. Communication in VIGO6 is whenever a component attempts to

run a method, write data or fetch data, from outside the scope of the component itself. Even if

the two components are located inside the same device. As an example, see the figure below.

In the above example, the component under development is programmed to communicate

with another component. This communication is done through a connector, which means that

the external target can be located in a device anywhere across the world, seen in relation to

the component being developed, or it can be located in the same device as the component

being developed. In both cases, the communication can fail, and even though components

located in the same device are less prone to fail, they still can.

Figure 1 Communication example.

The importance of error handling 552132-01

Page 2 of 5

The solution

The above description explains that it is very important to handle errors, as sporadic failures

can happen. Luckily, COPP comes with a tool to make error handling easy. The name of the

solution is called Method_state, which is located under system variables. Method_state can

have the values OK or Error. Once Method_state turns from OK to Error, it stays in the error

state until cleared by the programmer in the code. An example of usage can be seen below:

s

Thus the recipe to use method state is:

A. Set method state to OK just before doing the external communication

B. Do the external communication

C. Check method state:

a. If OK, handle a successful transaction

b. If Error, handle a failed transaction

// Make sure that method state is OK

Method_state := OK

// Write data to target

Connector.External_target.Register := My_data

// Now check the method state

IF Method_state = OK

 THEN

 // The data was written to target successfully.

 ELSE // Error

 // Something went wrong while writing to target

 // Handle the communication error

 Code Example 1 Method state usage.

The importance of error handling 552132-01

Page 3 of 5

The value of method state can be used to see the full transaction. If in the above code

example a method is called, which calls a second method that in turn calls yet a third method,

and the last called method fails or invokes a method error, the method state will be error in all

the methods that are part of calling another method. Let’s look at another example:

The code example below is a component calling another component’s method.

// Make sure that method state is OK

Method_state := OK

// Run method in external target

Connector.External_target.Run_method()

// Now check the method state

IF Method_state = OK

 THEN

 // The method was run successfully.

 ELSE // Error or Invalid

 // Something went wrong while running the method

 // Handle the communication error

 Code Example 2 First method calling another component’s method.

// Make sure that method state is OK

Method_state := OK

// Run method in external target

Connector.External_target_2.Run_method_2()

// Now check the method state

IF Method_state = OK

 THEN

 // The method was run successfully.

 ELSE // Error

 // Something went wrong while running the method

 // Handle the communication error

 Code Example 3 Second method calling another component’s method.

The importance of error handling 552132-01

Page 4 of 5

By following the three code examples above, the first example calls a method in an external

target. The method in the external target in turn calls a method in another external target. The

third method attempts to write data to a database. If at any point any method is not executed

correctly, the calling method will get a method error. If the last code example fails to write

data to the database, the calling method in Code Example 3 will get a method error, which in

turn will let Code Example 2 get a method error, meaning that all the levels know that

something went wrong. This is why we know that Method_state = OK implicitly means that

EVERYTHING went as it should.

A state machine will often require additional states to handle errors, operator intervention and

restart.

// Make sure that method state is OK

Method_state := OK

// Write data to target

Connector.DB_reg[APPEND] := My_data

// Now check the method state

IF Method_state = OK

 THEN

 // The data was written to target successfully.

 ELSE // Error

 // Something went wrong while writing to target

 // Handle the communication error

Code Example 4 Writing to a database.

The importance of error handling 552132-01

Page 5 of 5

When doing Boolean logic, invalid can cause Method_state errors. See example below:

In cases like above, it is a general good practice to set method_state to OK in the ELSE

clause of the first if statement checking “My_Variable”.

// Make sure that method state is OK

Method_state := OK

// Is my variable true? If it is invalid, method_state is error

IF My_Variable = True

 THEN

 // something

 ELSE //False or Invalid

 // something else

// Now check the method state

IF Method_state = OK

 THEN

 // My_variable was not invalid

 ELSE // Error

 // My_variable was invalid

Code Example 5 Method state to error in Boolean logic

